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A random walk model for turbulent diffusion

Lutz Janicke

August 2000

Abstract

An algorithm of a random walk model is presented that is not restricted to time steps
small with respect to the smallest Lagrangian correlation time. The correct relation for
the drift velocity under these circumstances is derived. The increased value of the time
step makes it possible in many cases to perform the dispersion calculation within a shorter
time or with higher accuracy.

In addition, an empirical expression for the drift velocity is given that is also valid for a
spatially varying time step. The algorithm described is implemented in the Lagrangian
dispersion model LASAT.
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Copyright Ingenieurbüro Janicke, Alter Postweg 21, 26427 Dunum, Germany, www.janicke.de



Lutz Janicke: A random walk model for turbulent diffusion 2

1 Introduction

Random walk models are used for the calculation of the turbulent diffusion of tracers in
the atmosphere. The atmospheric transport is determined by the following quantities:

V (x) : Vector of the mean wind velocity
Σ(x) : Tensor of the wind fluctuations
K(x) : Diffusion tensor

The wind field V (x) can be assumed to be incompressible, i.e. ∇·V = 0.

A random walk model treats a cloud of tracer material as a collection of many individual
particles and calculates the dispersion of the cloud by following the trajectories of these
particles. Here, the action of the turbulence on the movement of the particles is simulated
by a random process. All particles are moving independently.

Two basic types of algorithms for calculating the particle trajectories can be distinguished
(for simplicity only the one-dimensional case is considered):

• Simulation of classical diffusion

During a time step τ a particle is moved by the wind field V and displaced in
addition by a random amount xr,

xnew = xold + τV +xr .

The displacement xr is chosen at random and statistically independent for each time
step. This algorithm simulates the behaviour of colliding molecules changing their
flight direction with each collision at random.

• Simulation of turbulent diffusion

In the case of turbulent diffusion the role of molecular collisions is played by turbu-
lent eddies. Here, the process of a “collision” takes a rather long time. Accordingly,
the particles have a velocity u representing the wind fluctuations within the turbu-
lence and this velocity u is changed slowly by a random process. The time scale of
the change is the Lagrangian correlation time T . Therefore, the path of a particle
is generated by the following algorithm:

unew = (1− τ/T )uold + ur ,

xnew = xold + τV + τunew .

As a rule, the time step τ has to be small with respect to the Lagrangian correlation
time T . The velocity change ur is chosen at random and statistically independent
for each time step.

Turbulent diffusion studied on a time scale that is large with respect to the Lagrangian
correlation time shows a behaviour similar to that of classical diffusion, because on this
time scale the action of an eddy on a particle takes a short time and is therefore comparable
to a collision process.

The problem in defining a Lagrangian model consists in the difficulty to specify the
parameters of the random process in such a way that exactly the prescribed situation is
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simulated. In particular, the task is to correctly specify the first and second moment of
the random number distribution, i.e. mean value and variance, as functions of V , Σ and
K.

2 The algorithm

We will discuss the algorithm implemented in the Lagrangian dispersion model LASAT
(Lagrangian Simulation of Aerosol Transport).1,2,3 For the present a constant time step
τ is used and all quantities are computed for the times tn = nτ . If at time tn a particle
is located at position xn with a velocity un, then position and velocity at time tn+1 are
calculated using the following algorithm:

un+1 = Ψ(xn)·un + W (xn) +Λ(xn)·R , (1)

xn+1 = xn + τ [V (xn) + un+1] . (2)

Note, that the mean wind velocity V is not part of the particle velocity u in this formu-
lation but is rather added as a separate term in equation (2) to calculate the new particle
position. The model parameters to be determined are Ψ, W and Λ. The components of
the vector R are random numbers chosen with a probability density p(R). Here, we use
a normal distribution. Because mean value and variance are effectively set by W and Λ,
we can restrict p by the following conditions:

∫

p(R) d3
R = 1 , (3)

∫

R p(R) d3
R = R = 0 , (4)

∫

RR p(R) d3
R = RR = I . (5)

3 The density distribution in phase space

In the following, only a single time step from t = 0 to t = τ is considered. In order to
simplify the notation, position and velocity before the time step (at t = 0) are denoted
by x̂ and û, respectively, values during the time step (for 0 < t ≤ τ) by x(t) and u. If
only a single particle is considered, the suffix p is used. Therefore, the algorithm can be
written in the following way:

up = Ψ(x̂)·û+ W (x̂) +Λ(x̂)·R , (6)

xp(t) = x̂ + t[V (x̂) + up] . (7)

1L. Janicke: Particle simulation of inhomogeneous turbulent diffusion, in: “Air Pollution Modeling
And Its Application II”, C. de Wispelaere, ed., Plenum Press, New York, p. 527 (1983).

2L. Janicke: Particle simulation of dust transport and deposition and comparison with conventional
models, in: “Air Pollution Modeling And Its Application IV”, C. de Wispelaere, ed., Plenum Press, New
York, p. 759 (1985).

3L. Janicke: The embedding of the Lagrangian dispersion model LASAT into a monitoring system
for nuclear power plants, in: “Air Pollution Modeling And Its Application X”, S-V. Gryning and M.M.
Millán, eds., Plenum Press, New York, p. 405 (1994).
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A particle has a point like shape and its density np is given by Dirac’s delta-function4

np(x, t; x̂, û, R) = δ(x − xp(t)) . (8)

The density is a function of position x and time t and depends parametrically on the star-
ting values x̂ and û and the chosen random number R. In phase space with coordinates
x̂ and û, the density is

fp(x, u, t; x̂, û, R) = δ(x − xp(t)) δ(u − up) . (9)

Consider a group of particles, all starting from the same position (x̂, û) in phase space
but with different random vectors R chosen according to the probability density p(R).
The particle density in phase space is given by

f(x, u, t; x̂, û) =

∫

fp(x, u, t; x̂, û, R) p(R) d3
R . (10)

Now let the particles start from different positions and with different velocities. If their
distribution density at time t = 0 is f(x̂, û, 0), then the distribution density at time t is
given by

f(x, u, t) =

∫

fp(x, u, t; x̂, û, R) f(x̂, û, 0) p(R) d3
R d3

x̂ d3
û , (11)

(12)

=

∫

f(x̂, û, 0) p(R) δ(x − x̂ − t[V (x̂) + u]) δ(u − S(x̂, û, R)) d3
Rd3

x̂ d3
û ,

with the abbreviation

S(x̂, û, R) = Ψ(x̂)·û+ W (x̂) +Λ(x̂)·R . (13)

This equation describes how a cloud of particles develops during the period 0 < t ≤ τ if
each particle is moved by the algorithm in equations (6) and (7).

The algorithm uses the parameters V , W ,Ψ, andΛ. However, the system to be simulated
is described by V , Σ and K. The task of the following sections is to derive a relation
between these quantities.

4 The drift velocity

An important step is to determine the drift velocity W (x) that is added to the given
wind field V (x). It prohibits the accumulation of particles in regions of low turbulence.
It guarantees that a uniform distribution of particles remains uniform. Let us assume
that the system is in such a uniform state, hence f(x, u, τ) = f(x, u, 0) and n(x, τ) =
n(x, 0) = const. In the following we study what restrictions on the model parameters are
posed by this requirement.

4δ(x) = δ(x1)δ(x2)δ(x3) for a vector x with components x1, x2 and x3.
∫

f(x)δ(x) dx = f(0) for an
arbitrary function f(x) if the origin is within the interval of integration, otherwise the integral has the
value 0.
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The calculation becomes much simpler if the random vector R is replaced by the variable
S with a corresponding probability density q(x, u, S). The mean value of a quantity
X(u, S) with respect to the distribution density g(x, u, S),

g(x, u, S) = f(x, u, 0) q(x, u, S) , (14)

is defined as

X(x) =

∫

X(x, u, S) g(x, u, S) d3
ud3

S
∫

g(x, u, S) d3u d3S
. (15)

The mean value of S for example becomes

S =
1

n

∫

(Ψ·u + W +Λ·R) g(x, u, S) d3
u d3

S , (16)

= Ψ·u+ W . (17)

Using these variables, equation (12) can be written for t = τ as

f(x, u, τ) =

∫

g(x̂, û, S) δ(x−x̂−τ [V +u]) δ(u−S) d3
S d3

x̂ d3
û . (18)

From this equation, we derive momentum equations (with respect to u) and expand the
right hand side for small values of τ . To be more precise about the meaning of “small”,
we define a characteristic velocity u0 and a characteristic length l0 and require

ε = τu0/l0 ≪ 1 . (19)

The expansion uses the following ordering scheme:

V = O(u0) , (20)

Σ = O(u2
0) , (21)

K = O(l0u0) , (22)

Ψ = O(1) , (23)

Λ = O(u0) , (24)

W = O(εu0) , (25)

|u| = O(u0) , (26)

u = O(εu0) . (27)

Terms with spatial derivatives of the form τu ·∇ are also of order ε. Using in addition
the abbreviation

S
∗ = V +S , (28)
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the second moment of equation (18) reads to lowest order:
∫

uuf(x, u, τ) d3
u = n(x, τ)u(x, τ)u(x, τ) , (29)

=

∫

uu g(x̂, û, S) δ(x − x̂ − τ [V + u]) δ(u − S) d3
S d3

û d3
x̂ d3

u , (30)

=

∫

SS g(x̂, û, S) δ(x − x̂ − τS
∗)) d3

S d3
û d3

x̂ , (31)

=

∫

SS g(x − τS
∗, û, S) d3

S d3
û , (32)

=

∫

SS g(x, û, S) d3
S d3

û + O(εu2
0) . (33)

The mean value SS is needed to lowest order only,

SS = Ψ·uΨ·u+Λ·RΛ·R + O(ε2u2
0) , (34)

= Ψ·uu·ΨT +Λ·ΛT , (35)

and we get

n(x, τ)u(x, τ)u(x, τ) = n(x, 0)
(

Ψ·uu·ΨT +Λ·ΛT
)

. (36)

For the steady state considered we assume that the velocity variance of the particles
(u − u)(u − u) equals the velocity variance of the atmospheric turbulence Σ. Then we
have

uu = Σ+ uu , (37)

= Σ+ O(ε2u2
0) . (38)

Furthermore, using u(x, τ)u(x, τ) = u(x, 0)u(x, 0) and n(x, τ) = n(x, 0), we get from
equation (36)

Σ = Ψ·Σ·ΨT +Λ·ΛT . (39)

If Ψ is known then Λ can be calculated from Σ−Ψ·Σ·ΨT by a Cholesky decomposition.

Retaining only terms up to first order, the first moment of equation (18) yields:
∫

u f(x, u, τ) d3
u = n(x, τ)u(x, τ) , (40)

=

∫

S g(x̂, û, S) δ(x − x̂ − τS
∗) d3

S d3
ûd3

x̂ , (41)

=

∫

S[g − τS
∗ ·∇g] d3

S d3
û + O(ε2u0) , (42)

= n[S − τ∇·S∗
S] , (43)

= n[S − τ∇·SS] + O(ε2u0) . (44)

Using equations (17), (35), (38), and (39), we get

u = Ψ·u+W −τ∇·Σ . (45)
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It is not correct to assume that u vanishes, arguing for example that in a steady state
no mean particle velocities are allowed, because they would disturb the uniform density,
thereby introducing a time dependence into the system. Here, a steady state only means
that at time t = τ the system is in the same state as at time t = 0. Because all particles
change their velocities at exactly these times — the random processes are synchronized
— the density may change in between. Hence, the time derivative of the density may
be different from zero and, as a consequence, the equation of continuity may yield a non
vanishing flux.

Including terms up to second order, integrating equation (18) with respect to u yields:

∫

f(x, u, τ) d3
u = n(x, τ) , (46)

=

∫

g(x̂, û, S) δ(x − x̂ − τS
∗) d3

S d3
û d3

x̂ , (47)

=

∫

[g − τS
∗ ·∇g + 1

2
τ 2(S∗ ·∇)2g] d3

S d3
û , (48)

= n(x, 0)− τ∇·(nS
∗) + 1

2
τ 2∇∇··(nS

∗
S

∗) , (49)

With n(x, τ) = n(x, 0) = const we get

∇·
(

S
∗ − 1

2
τ∇·S∗

S
∗

)

= 0 . (50)

Using ∇·V = 0, we have

∇·S∗ = ∇·(V +Ψ·u+ W ) , (51)

= ∇·(Ψ·u + W ) , (52)

= ∇·S , (53)

τ∇·S∗
S

∗ = τ∇·(V V + V S + SV + SS) , (54)

= τ∇·(V V +Σ) + O(ε2u0) . (55)

Equation (50) can be satisfied if

S = 1

2
τ∇·S∗

S
∗ (56)

or

Ψ·u+W = 1

2
τ∇·(V V +Σ) . (57)

By adding this equation to equation (45) we get

u = 1

2
τ∇·(V V )− 1

2
τ∇·Σ , (58)

and inserting this into equation (57) yields

W = 1

2
τ(I+Ψ)·(∇·Σ)+ 1

2
τ(I−Ψ)·(V ·∇V ) . (59)

The second term on the right hand side has a special meaning, because it is retained even
if the random walk of the particles is switched off. Its meaning becomes clear if we look
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at the way the particle trajectory is calculated without any random walk (Ψ = 0, Λ = 0).
Then the algorithm reads

xn+1 = xn+τ [V (xn)+W (xn)] . (60)

Each piece of the trajectory starts tangential to the local flow line. If the flow line is bent,
the particle is displaced systematically away from the flow line. A more accurate way
to follow the flow line would be to use a velocity averaged over the path of the particle
during the time step instead of simply the value at the starting point xn. Alternatively,
the velocity at the particle position in the middle of the time step can be used, i.e. at
xn +

1

2
τV . Using a Taylor expansion of V (x) around the point xn,

V (xn+
1
2
τV ) = V (xn)+

1
2
τV ·∇V +O(εu0) , (61)

we get to lowest order exactly the term calculated before for the drift velocity W (xn).
Therefore, the second term in equation (59) may be omitted if the advection along V (x)
is calculated more accurate than to first order. For time steps small with respect to the
Lagrangian correlation time, this term may also be dropped, because in this case we have
Ψ ≈ I as will be shown later on.

5 The equation of diffusion

The parameters Λ and W are given by equations (39) and (59). Only Ψ remains to be
determined. For this purpose we consider a particle cloud after it has dispersed for a time
period large with respect to the Lagrangian correlation time. Then it can be described by
the equation of classical diffusion. We assume that the density gradients of the cloud are
so small that the ordering scheme described before may be applied as well to the gradient
of n(x).

Again we use the momentum equations but now without the assumption of n being
constant. The fluxes produced by the density gradients are small and from equation (33)
we get as before to lowest order

∫

uuf(x, u, τ) d3
u ≈ n(x, τ)Σ(x) . (62)

Equation (42) now reads

n(x, τ)u(x, τ) =

∫

S[g − τS
∗ ·∇g] d3

S d3
û , (63)

= nΨ·u+ nW − nτ∇·Σ− τΣ·∇n + O(ε2u0) , (64)

and we get for u

nu = (I−Ψ)−1 ·(nW −nτ∇·Σ−τΣ·∇n) . (65)

In equation (49), the particle density n no longer drops out. With

n(x, τ)− n(x, 0)

τ
≈

∂n(x, t)

∂t
(66)
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we now get

∂n

∂t
= ∇·

[

−nV − nΨ·u − nW + 1

2
nτ∇·(V V +Σ) + 1

2
τ(V V +Σ)·∇n

]

. (67)

The drift velocity W has been determined in such a way that the expression −nΨ·u −
nW + 1

2
nτ∇·(V V +Σ) vanishes for constant n. Therefore, this expression reduces after

inserting nu from equation (65) to the term containing the gradient of n and we get

∂n

∂t
+ V ·∇n = ∇·

[

τΨ·(I−Ψ)−1 ·Σ·∇n + 1

2
τ(V V +Σ)·∇n

]

, (68)

= ∇·
{

τ
[

Ψ·(I−Ψ)−1 + 1

2
I
]

·Σ·∇n
}

+ 1

2
τ∇·(V V ·∇n) . (69)

The last term represents again the error of a first order algorithm for the case of an inho-
mogeneous wind field and will not be considered further in the following. The remaining
terms form a diffusion equation:

∂n

∂t
+ V ·∇n = ∇·(K·∇n) , (70)

K = τ
[

Ψ·(I−Ψ)−1 + 1

2
I
]

·Σ . (71)

If the diffusion tensor K is represented as

K = Φ−1·Σ , (72)

then

Φ−1 = τ
[

Ψ·(I−Ψ)−1 + 1

2
I
]

. (73)

Using the identity

Ψ·(I−Ψ)−1 = −I+(I−Ψ)−1 (74)

we get

Ψ = (I+ 1

2
τΦ)−1 · (I− 1

2
τΦ) , (75)

= (I− 1
2
τΦ) · (I+ 1

2
τΦ)−1 , (76)

=
I− 1

2
τΦ

I+ 1

2
τΦ

. (77)

The formulation in form of a fraction is possible, because it makes no difference whether
the inverse term is multiplied from the left or from the right side.

For the one-dimensional case, we get the diffusion coefficient by multiplying the variance
of the velocity fluctuations σ2 by the Lagrangian correlation time T ,

K = Tσ2 . (78)

Therefore, for the three-dimensional case, the tensor Φ represents the reciprocal of the
Lagrangian correlation times. If the time step τ is small with respect to the Lagrangian
correlation times, ||τΦ|| ≪ 1, equation (77) can be expanded with the result

Ψ ≈ I−τΦ for ||τΦ|| ≪ 1 . (79)

For the one-dimensional case, this reduces to

Ψ ≈ 1−τ/T for τ/T ≪ 1 . (80)
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6 Summary

If the mean wind field V (x), the tensor of the wind velocity fluctuations Σ(x), and the
diffusion tensor K(x) are given, then for constant time step τ the parameters W , Λ and
Ψ of the random walk model are given by

Ψ =
I− 1

2
τΦ

I+ 1
2
τΦ

with Φ = Σ·K−1 , (81)

W = 1

2
τ(I +Ψ)·(∇·Σ) , (82)

Λ·ΛT = Σ−Ψ·Σ·ΨT . (83)

A basic requirement for the derivation of these equations was the condition that the time
step τ did not vary in space. However, for some applications it is desirable to have a time
step that can be adapted to spatially varying dispersion conditions. It is not difficult to
replace the constant factor τ by a function τ(x) in equations (81) and (82). However,
regarding equation (82) the question arises whether this function has to be differentiated
together with the tensor Σ or not.

Empirical results are available for two special cases:

• Small time step

If everywhere the time step τ(x) is small with respect to the Lagrangian correlation
times Ti, then ||τΦ|| ≪ 1 and therefore Ψ ≈ I. Experiments show that the relation
derived above for constant τ also yields correct results in this case,

W (x) = τ(x)∇·Σ(x) .

• Classical diffusion

We assume that all Lagrangian correlation times are equal and the tensor Φ is
diagonal. Then Φ can be written as Φ = 1

T
I. If the time step is set to twice the

Lagrangian correlation time, τ(x) = 2T (x), then Ψ = 0 and we get the algorithm
for classical diffusion. Tests show that in this case W (x) has to be chosen as

W (x) = 1

2
∇· [τ(x)Σ(x)] = ∇·K .

Both empirical findings are reproduced by the following relation:

W (x) = 1

2
[I−Ψ(x)]·{∇·[τ(x)Σ(x)]}+τ(x)Ψ(x)·[∇·Σ(x)] . (84)

This relation is used in LASAT and has successfully been tested, but an exact theoretical
derivation has not yet been found.
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